skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Xiaodan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Previous studies have suggested possible connections between the decreasing Arctic sea‐ice and long‐duration (>5 days, LD) cold weather events in Eurasia and North America. Here we document the occurrences of weather regimes in winter by their durations, based on the empirical orthogonal function analyses of the daily geopotential height fields at 500 hPa (z500) for the months of November–March 1979–2019. Significant changes in the occurrence frequency and persistence of Ural ridge (UR) and weak stratospheric polar vortex (PV) were found between winters following high and low autumn sea‐ice covers (SIC) in the Barents and Kara seas. It is shown that a strengthening of the UR is accompanied with a weakening of the PV, and a weak PV favors Greenland ridge (GR). Cold spells in East Asia persist for 5 more days after an LDUR. Cold spells from Canada to the U.S. occur 2–5 days after an LD Ural trough (UT) and are associated with a z500 anomaly dipole centered over Alaska (+) and Hudson Bay (−). Cold spells in the eastern U.S. occur 1–4 days after an LDGR due to circulations resembling the Pacific‐North America pattern. Increased occurrences of UR in winter are associated with a decreased eastward propagation of synoptic waves from the North Atlantic to Japan and the North Pacific. 
    more » « less
  2. Abstract Arctic warming has significant environmental and social impacts. Arctic long‐term warming trend is modulated by decadal‐to‐multidecadal variations. Improved understanding of how different external forcings and internal variability affect Arctic surface air temperature (SAT) is crucial for explaining and predicting Arctic climate changes. We analyze multiple observational data sets and large ensembles of climate model simulations to quantify the contributions of specific external forcings and various modes of internal variability to Arctic SAT changes during 1900–2021. We find that the long‐term trend and total variance in Arctic‐mean SAT since 1900 are largely forced responses, including warming due to greenhouse gases and natural forcings and cooling due to anthropogenic aerosols. In contrast, internal variability dominates the early 20th century Arctic warming and mid‐20th century Arctic cooling. Internal variability also explains ∼40% of the recent Arctic warming from 1979 to 2021. Unforced changes in Arctic SAT are largely attributed to two leading modes. The first is pan‐Arctic warming with stronger loading over the Eurasian sector, accounting for 70% of the unforced variance and closely related to the positive phase of the unforced Atlantic Multidecadal Oscillation (AMO). The second mode exhibits relatively weak warming averaged over the entire Arctic with warming over the North American‐Pacific sector and cooling over the Atlantic sector, explaining 10% of the unforced variance and likely caused by the positive phase of the unforced Interdecadal Pacific Oscillation (IPO). The AMO‐related changes dominate the unforced Arctic warming since 1979, while the IPO‐related changes contribute to the decadal SAT changes over the North American‐Pacific Arctic. 
    more » « less
  3. Abstract Under increasing greenhouse gases, the Arctic warms about twice as fast as elsewhere, known as Arctic amplification (AA). AA weakens meridional temperature gradients and is hypothesized to weaken zonal wind and cause wavier circulation with stronger meridional wind ( υ ) over northern mid-to-high latitudes. Here model simulations are analyzed to examine the υ response to increased CO 2 and AA alone. Total υ changes are found to be dominated by the effect of increased CO 2 without AA, with a zonal wavenumber-4 (wavenumber-3) change pattern over the northern (southern) extratropics that generally enhances current υ and results partly from changes in zonal temperature gradients. The extratropical υ change patterns are quasi-barotropic and are more pronounced during boreal winter. The CO 2 forcing also causes baroclinic υ changes over the tropics tied to convection changes. The impact of AA on υ is mainly over the northern extratropics and is opposite to the effect of increased CO 2 but with smaller magnitude. An eastward shift (∼5° longitude) and an amplitude increase (∼1 m s −1 ) in the climatology of the northerlies over Europe caused mainly by CO 2 forcing contribute to the drying in southern Europe, while both AA and CO 2 forcing enhance the climatology of the northerlies over East Asia. Over the northern mid-to-high latitudes, Arctic sea ice loss and AA enhance the land–ocean thermal contrast in winter, while increased CO 2 alone weakens it, resulting in opposite changes in zonal temperature gradients and thus υ . Different warming rates over land and ocean also contribute to the intermodel spread in υ response patterns among climate models. Significance Statement Meridional wind ( υ ) greatly contributes to thermal and moisture advection due to large meridional gradients in these fields. It is hypothesized that the enhanced Arctic warming under anthropogenic global warming could weaken meridional temperature gradients, decelerate westerly jets, and cause wavier circulation with stronger υ over northern extratropics. Using novel climate model simulations, we found that the effect of increased CO 2 without AA determines the total υ changes. AA generally weakens the climatological υ , contrary to the direct effect of increased CO 2 . The υ changes are small relative to its climatology but may have large impacts on regional climate over central Europe, East Asia, and interior North America. More research is needed to examine the mechanisms causing regional υ changes. 
    more » « less
  4. Abstract Heavy Meiyu‐Baiu rainfall occurred over central‐east China and Japan in June–July 2020. This study analyzes observational and reanalysis data and performs atmospheric model simulations to investigate its causes. It is found that low Arctic sea ice cover (SIC) in late spring‐early summer of 2020 along the Siberian coast was an important factor. The low SIC caused local warming and high pressure, resulted in excessive atmospheric blockings over East Siberia, which caused cold air outbreaks into the Meiyu‐Baiu region, stopped the seasonal northward march of the Meiyu‐Baiu front, and increased the thermal contrast across the front, leading to record‐breaking rainfall in June–July 2020. Our results suggest that the 2020 extreme Meiyu‐Baiu was partly caused by the low SIC around the Siberian coast through its impact on East Siberian blockings. As sea ice along the Siberian coast decreases under global warming, its variations and thus influence on Meiyu‐Baiu rainfall may weaken. 
    more » « less